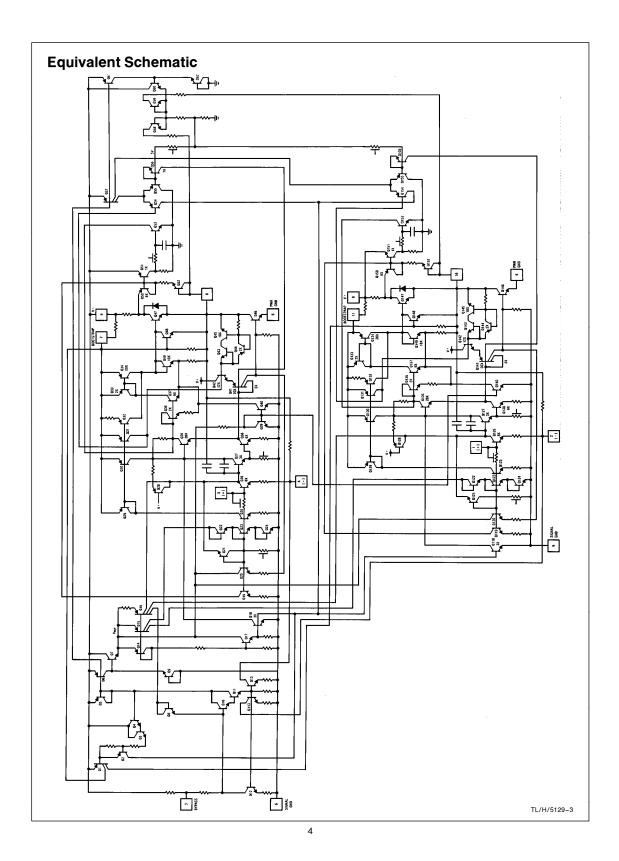


LM2005 20 Watt Automotive Power Amplifier

LM2005T-M and LM2005T-S Absolute Maximum Ratings			
If Military/Aerospace specified devices are please contact the National Semiconduc Office/Distributors for availability and specifi	tor Sales	Output Current Repetitive (Note 2) Non-Repetitive	3.5A 4.5A
Operating Supply Voltage	18V	Power Dissipation	30W
DC Supply Voltage (Note 1)	28V	Operating Temperature	-40°C to +85°C
Peak Supply Voltage (50 ms) 401		Storage Temperature	-60°C to +150°C
		Lead Temp. (Soldering, 10 seconds)	260°C

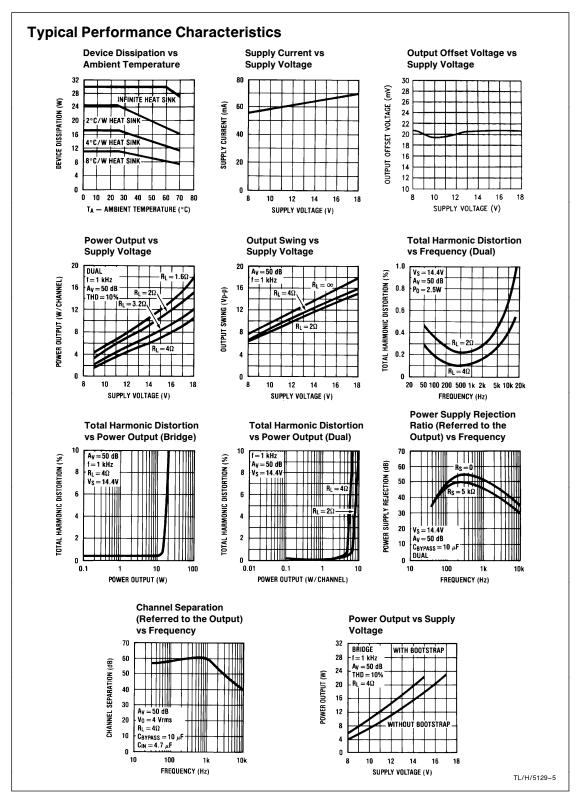
LM2005T-M

Electrical Characteristics Refer to the **bridge** application circuit, *Figure 1*, $T_{amb} = 25^{\circ}C$, $A_V = 50 \text{ dB}$, R_{th} (heatsink) = 4°C/W, unless otherwise specified


Parameter	Test C	onditions	Min	Тур	Max	Units
Supply Voltage			8		18	V
Output Offset Voltage (Note 3) (between Pin 8 and 10)	$V_{S} = 14.4V$ $V_{S} = 13.2V$			±20	±150 ±150	mV mV
Total Quiescent Drain Current Includes Current in Feedback Resistors	$V_{S} = 14.4V$ $V_{S} = 13.2V$	$R_{L} = 4\Omega$ $R_{L} = 3.2\Omega$		75 70	150 160	mA mA
Output Power	d = 10% V _S = 14.4V V _S = 13.2V	$R_{L} = 4\Omega$ $R_{L} = 3.2\Omega$	18 20 17	20 22 19		w w w
THD	$\label{eq:states} \begin{array}{l} f = 1 \ \text{kHz} \\ V_S = 14.4 \text{V} \\ P_O = 50 \ \text{mW to} \\ V_S = 13.2 \text{V} \\ P_O = 50 \ \text{mW to} \end{array}$	m P15W $ m R_L = 3.2\Omega$			1	%
Input Sensitivity	f = 1 kHz $P_0 = 2W$ $P_0 = 2W$			9 8		mV mV
Input Resistance	f = 1 kHz		70			kΩ
Low Frequency Roll Off ($-3 dB$)	$R_L = 3.2\Omega$				40	Hz
High Frequency Roll Off (-3 dB)	$R_L = 3.2\Omega$		20			kHz
Closed Loop Voltage Gain	f = 1 kHz		45	50		dB
Total Input Noise Voltage	$R_g = 10 k\Omega$ (N	ote 4)		3	10	μV
Supply Voltage Rejection	$\begin{array}{l} R_{g}=10k\Omega\\ C_{4}=10\;\muF \end{array}$	$f_{ripple} = 100 \text{ Hz}$ $V_{ripple} = 0.5 \text{V}$	45	55		dB
Efficiency	$V_{S} = 14.4V P_{O} = 20W P_{O} = 22W V_{S} = 13.2V P_{O} = 19W $	$R_{L} = 4\Omega$ $R_{L} = 3.2\Omega$ $f = 1 \text{ kHz}$		60 60 58		% %
Output Voltage with One Side of the Speaker Shorted to Ground	$V_{S} = 14.4V$ $V_{S} = 13.2V$	$R_L = 4\Omega$ $R_L = 3.2V$			2	v

Note 2: Internal current limit.

Note 3: For LM2005T-M only.

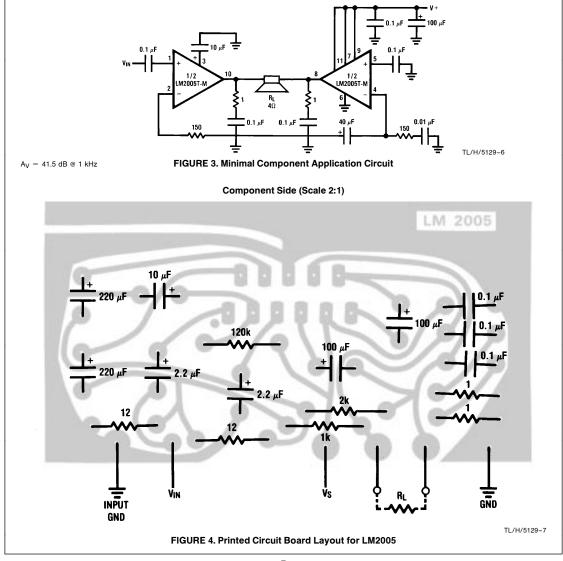

Note 4: Bandwidth filter: 22 Hz to 22 kHz.

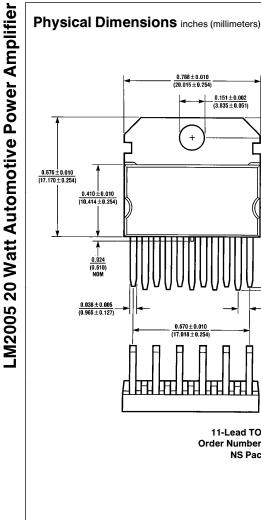
$R_{\text{th (heatsink)}} = 4^{\circ}C/W$, unless otherwise s						
Parameter	Test	Conditions	Min	Тур	Max	Units
Supply Voltage			8		18	V
Quiescent Output Voltage	V _S = 14.4V V _S = 13.2V		6.6 6	7.2 6.6	7.8 7.2	
Total Quiescent Drain Current	$V_{\rm S} = 14.4V$		Ŭ	65	120	mA
Includes Current in Feedback Resistors	$V_{\rm S} = 13.2V$			62	120	mA
Output Power	f = 1 kHz	d = 10%				
(Each Channel)	$V_{S} = 14.4V$	-	6	6.5		W
		$R_L = 3.2\Omega$	7	8		W
		$R_{L} = 2\Omega$ $R_{L} = 1.6\Omega$	9 10	10 11		w w
	V _S = 13.2V	$R_L = 3.2\Omega$	6	6.5		Ŵ
		$R_L = 1.6\Omega$	9	10		w
	$V_{S} = 16V$	$R_L = 2\Omega$		12		W
THD	f = 1 kHz					
(Each Channel)	$V_{S} = 14.4V$ $P_{O} = 50 \text{ mW to}$	L		0.2	1	%
	$V_{\rm S} = 14.4V$	$R_L = 2\Omega$		0.2		/0
	$P_0 = 50 \text{ mW to}$	-		0.3	1	%
	$V_{S} = 13.2V$	$R_L = 3.2\Omega$				
	$P_0 = 50 \text{ mW to}$			0.2	1	%
	$V_{S} = 13.2V$ $P_{O} = 40 \text{ mW to}$	$R_L = 1.6\Omega$		0.3	1	%
Cross Talk	$V_{\rm S} = 14.4V$			0.0		70
(Note 5)	$R_L = 4\Omega$	f = 1 kHz	40	60		dB
	$V_0 = 4 V_{rms}$					
	$R_g = 5 k\Omega$	f = 10 kHz		40		dB
Input Saturation Voltage			300			mV
Input Sensitivity	f = 1 kHz	$P_0 = 1W$				
		$R_L = 4\Omega$		6		mV
		$R_L = 3.2\Omega$	70	5.5		1.0
Input Resistance	f = 1 kHz	Non-Inverting Input	70	200		kΩ
Low Frequency Roll Off (-3 dB)	$R_L = 2\Omega$	Inverting Input		10	50	kΩ Hz
High Frequency Roll Off (-3 dB)	$R_L = 2\Omega$		15		50	kHz
Voltage Gain (Open Loop)	f = 1 kHz		10	90		dB
Voltage Gain (Closed Loop)	f = 1 kHz		48	50	51	dB
Closed Loop Gain Matching	1 1 1 1 1 2		10	0.5		dB
Total Input Noise Voltage	$R_{g} = 10 k\Omega$ (No	ote 6)		1.5	5	μV
Supply Voltage Rejection	$R_{a} = 10 \text{ k}\Omega$	f _{ripple} =100 Hz				
	$C_3 = 10 \mu\text{F}$	V _{ripple} =0.5V	35	45		dB
Efficiency	$V_{S} = 14.4V$	f = 1 kHz				
	$R_L = 4\Omega$	$P_O = 6.5W$		70		%
	$R_L = 2\Omega$	$P_0 = 10W$		60		%
	$V_{\rm S} = 13.2V$ B ₁ = 3.20	f = 1 kHz $P_{O} = 6.5W$		70		0/
	$R_{L} = 3.2\Omega$ $R_{L} = 1.6\Omega$	$P_0 = 6.5W$ $P_0 = 10W$		70 60		%

Components	Comments	Components	Comments
1. R1, R2 R5, R4	Sets voltage gain,	5. C4, C5	Bootstrap capacitors, used to increas drive to output stage.
	$A_V \cong 1 + \frac{R'}{R1}$ for one channel,	6. C3	Improves power supply rejection. Increasing C3 increases turn-on delay (approximately 2 ms per μ F).
	$A_V = 1 + \frac{R'}{R5}$ for the other. Where R' is the equivalent resistance	7. C2, C6	Inverting input DC decouple. Low frequency pole:
	of R2 in parallel with an internal 10k resistor:		$F_L 2 = \frac{1}{2\pi Z(\text{inverting})C2}$
	$R' = \frac{10k \bullet R2}{R2 + 10k} \cdot$		Z (inverting) \approx 10 k Ω .
	$R2 + 10k$ If R2 \ll 10k, then	8. C _C	Output coupling capacitor. Isolates pins 10 and 8 from load. Low
	$A_V \cong 1 + \frac{R2}{R1} \cdot$		frequency pole;
2. R3	Adjusts output symmetry for maximum power output.	9. C _S	$F_L 3 = \frac{1}{2\pi R_L C_C}$. Power supply filtering.
3. R _O , C _O	Works to stabilize internal output stage. Necessary for stability. C _O should be ceramic disc or equivalently good high frequency capacitor.	3	
4. C1, C9	Input coupling capacitor. Low frequency pole set by		
	$F_{L}1 = \frac{1}{2\pi Z \text{ (non-inverting) C1}}$ Decreasing capacitor value will also increase noise.		
Typical Ap	plications (Continued)		
	C3 10 μF R3 120k		
		^{Cs} ^L ^L ^L ^L	Vs <u>+</u> Cs <u>100</u> μF <u>C9</u> <u>C9</u>
	$V_{IN} \rightarrow \frac{1}{1} + \frac{1}{1} + \frac{1}{100 \mu F}$	C5 + 7 100 μF 8 1 LM20	⁹ + ⁵ + ¹ + V _{IN}
	C2 + 220 μF - R2 1.2k	<u>न</u> ै	
	$\begin{array}{c} \bullet & \bullet \\ & &$		- C ₀ - C ₁ μ _F ξ _{3,3} - C ₁ μ _F ξ _{3,3}
	국 · · · · · · · · · · · · · · · · · ·	nplifier Application a	TL/H/5129-4 and Test Circuit
	· 북· · 북 FIGURE 2. 10W/Channel Stereo Ar	nplifier Application a	

Г

Application Hints

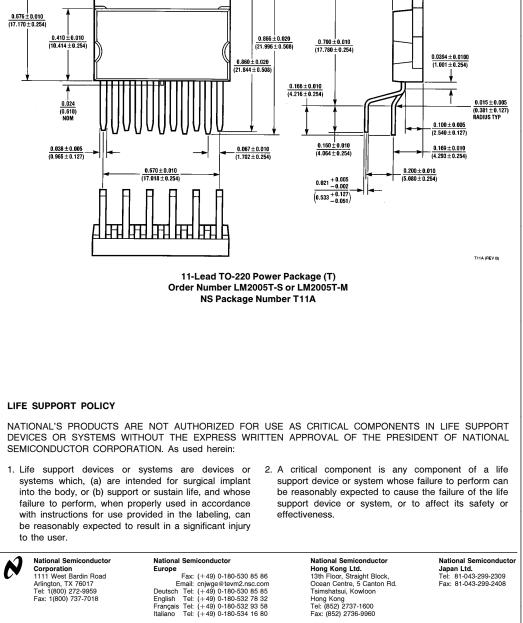

The high current capability of the LM2005 allows it to continuously endure either AC or DC short circuit of the output with a maximum supply voltage of 16V. This will protect the loudspeaker in a bridge mode, when a DC short of the output occurs on one side of the speaker. The device will prevent the speaker from destruction by reducing the DC across the load (bridge mode) to typically less than 2 $V_{DC}(V_S\!=\!14.4V,~R_L\!=\!4\Omega)$, by an internal current pullback method.


The LM2005 can withstand a constant 28 V_{DC} on the supply with no damage (maximum operating voltage is 18V). The device is also protected from load dump or dangerous transients up to 40V for 50 ms (every 1000 ms) on the supply with no damage.

Protection diodes protect the device driving inductive loads, during which the load can generate voltages greater than

supply or less than ground levels. The protection diodes will clamp these transients to a safe V_{BE} above and below the rails.

The bridge configuration in *Figure 3* is designed for applications requiring minimal printed circuit board area and maximum cost effectiveness. The circuit will function with the elimination of bootstrap components R3, C4 and C5 (refer to *Figure 1*). This will result in less output power by decreasing output voltage swing to the load. By using internal feedback resistors (typically 10 k Ω), feedback components R2, R3 and C2 (*Figure 1*) may be omitted where closed loop voltage gain accuracy is not critical. The net result is a stable, cost effective circuit that will satisfy many application needs.



0.788±0.010 (20.015±0.254)

+

0.151±0.002 (3.835±0.051)

 $\frac{0.110 \pm 0.005}{(2.794 \pm 0.127)}$

Lit. # 107847

 $-\frac{0.060\pm0.003}{(1.524\pm0.076)}$

 $\frac{0.177 \pm 0.005}{(4.496 \pm 0.127)}$

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.

National Semiconductor was acquired by Texas Instruments.

http://www.ti.com/corp/docs/investor_relations/pr_09_23_2011_national_semiconductor.html

This file is the datasheet for the following electronic components:

LM2005T-M - http://www.ti.com/product/Im2005t-m?HQS=TI-null-null-dscatalog-df-pf-null-wwe LM2005T-S - http://www.ti.com/product/Im2005t-s?HQS=TI-null-null-dscatalog-df-pf-null-wwe